
Taking ChIP from Yeast to ENCODE to Enable Genome-Wide Regulatory Protein Mapping (Peggy Farnham)
In this episode of the Epigenetics Podcast, we talked with Peggy Farnham from the Keck School of Medicine at USC about her work on establishing the ChIP Method in mammalian cells.
In this episode, we dive into the relationship between transcription factors, chromatin dynamics, and gene expression with Professor Peggy Farnham from the Keck School of Medicine at USC. Professor Farnham shares her profound insights into how her groundbreaking research has reshaped our understanding of gene regulation and its implications in cancer. We explore how she has been a pioneer in mapping the genome-wide landscape of regulatory proteins, illuminating the molecular logic behind transcriptional control and its disruption in cancer biology.
The interview starts with her instrumental role in adapting chromatin immunoprecipitation (ChIP) technology from yeast to human cells. Professor Farnham reflects on the technical challenges she faced during this transition, such as the quest for visibility of signals in mammalian systems. Her ability to innovate and troubleshoot challenges led to significant advancements in techniques that allow for the rapid identification of transcription factor binding sites, fundamentally changing the landscape of epigenetic research.
As the discussion progresses, we learn about Professor Farnham's active involvement in the ENCODE project, where she contributed to high-resolution mapping of transcription factors and regulatory elements in human cells. She articulates her appreciation for collaborative efforts in science, highlighting how working within a consortium harnesses the collective expertise of diverse research groups. This collaboration not only bolstered the credibility of the data produced but also propelled the field forward in understanding the complexity of gene regulation.
Through her participation in various projects, such as the Psyc-ENCODE consortium and the Roadmap Epigenome Mapping Consortium, Professor Farnham shares insights into her investigation of epigenetic variations, particularly in relation to complex disorders like schizophrenia. Her findings underscore the nuances of enhancer variability among individuals and the implications for understanding disease mechanisms, thereby advancing our knowledge of genetic regulation and its contributions to diverse biological outcomes.
Moreover, the episode highlights Professor Farnham's reflective understanding of emerging technologies in the field. She discusses the evolution of methods that allow researchers to investigate gene regulation at single-cell resolution, recognizing the significant implications these innovations have for our comprehension of cellular differentiation and the transcriptional landscape.
References-
Weinmann AS, Bartley SM, Zhang T, Zhang MQ, Farnham PJ. Use of chromatin immunoprecipitation to clone novel E2F target promoters. Molecular and Cellular Biology. 2001 Oct;21(20):6820-6832. DOI: 10.1128/mcb.21.20.6820-6832.2001. PMID: 11564866; PMCID: PMC99859.
-
Wells J, Farnham PJ. Characterizing transcription factor binding sites using formaldehyde crosslinking and immunoprecipitation. Methods (San Diego, Calif.). 2002 Jan;26(1):48-56. DOI: 10.1016/s1046-2023(02)00007-5. PMID: 12054904.
-
Rhie SK, Schreiner S, Witt H, et al. Using 3D epigenomic maps of primary olfactory neuronal cells from living individuals to understand gene regulation. Science Advances. 2018 Dec;4(12):eaav8550. DOI: 10.1126/sciadv.aav8550. PMID: 30555922; PMCID: PMC6292713.
-
Tak YG, Hung Y, Yao L, et al. Effects on the transcriptome upon deletion of a distal element cannot be predicted by the size of the H3K27Ac peak in human cells. Nucleic Acids Research. 2016 May;44(9):4123-4133. DOI: 10.1093/nar/gkv1530. PMID: 26743005; PMCID: PMC4872074.
Mais episódios de "Epigenetics Podcast"



Não percas um episódio de “Epigenetics Podcast” e subscrevê-lo na aplicação GetPodcast.







