Music Generation - Google Magenta Best Demo NIPS 2016 LSTM RNN - Deep Learning: Zero to One
13.3.2017
0:00
1:09:30
I talk through generating 10 melodies, two of which I play at the conclusion using a model trained on thousands of midi examples contained in a .mag Magenta file bundle. I used the Biaxial RNN (https://github.com/hexahedria/biaxial-rnn-music-composition) by a student named Daniel Johnson and the Basic RNN (https://github.com/tensorflow/magenta/tree/master/magenta/models/melody_rnn#basic) by Google's Magenta group within TensorFlow and learned that priming a melody with a single note can set the key for each generated melody, and, Anaconda's single 'source activate' line replaces the need for virtualenv and installs all of the necessary dependencies to make this environment easily reproducible. 2 - 3 more details are posted at: https://medium.com/@SamPutnam/deep-learning-zero-to-one-music-generation-46c9a7d82c02
Weitere Episoden von „Deep Learning: Zero to One“
Verpasse keine Episode von “Deep Learning: Zero to One” und abonniere ihn in der kostenlosen GetPodcast App.