
What if your AI systems could explain why something will happen before it does, rather than simply reacting after the damage is done?
In this episode of Tech Talks Daily, I sat down with Zubair Magrey, co-founder and CEO of Ergodic AI, to unpack a different way of thinking about artificial intelligence, one that focuses on understanding how complex systems actually behave. Zubair's journey begins in aerospace engineering at Rolls-Royce, moves through a decade of large-scale enterprise AI programs at Accenture, and ultimately leads to building Ergodic, a company developing what he describes as world models for enterprise decision making.
World models are often mentioned in research circles, but rarely explained in a way that business leaders can connect to real operational decisions. In our conversation, Zubair breaks that gap down clearly. Instead of training AI to spot patterns in past data and assume the future will look the same, world-model AI focuses on cause and effect. It builds a structured representation of how an organization works, how different parts interact, and how actions ripple through the system over time. The result is an AI approach that can simulate outcomes, test scenarios, and help teams understand the consequences of decisions before they commit to them.
We explored why this matters so much as organizations move toward agentic AI, where systems are expected to recommend or even execute actions autonomously. Without an understanding of constraints, dependencies, and system dynamics, those agents can easily produce confident but unrealistic recommendations. Zubair explains how Ergodic uses ideas from physics and system theory to respect real-world limits like capacity, time, inventory, and causality, and why ignoring those principles leads to fragile AI deployments that struggle under pressure.
The conversation also gets practical. Zubair shares how world-model simulations are being used in supply chain, manufacturing, automotive, and CPG environments to detect early risks, anticipate disruptions, and evaluate trade-offs before problems cascade across customers and regions. We discuss why waiting for perfect data often stalls AI adoption, how Ergodic's data-agnostic approach works alongside existing systems, and what it takes to deliver ROI that teams actually trust and use.
Finally, we step back and look at the organizational side of AI adoption. As AI becomes embedded into daily workflows, cultural change, experimentation, and trust become just as important as models and metrics. Zubair offers a grounded view on how leaders can prepare their teams for faster cycles of change without losing confidence or control.
As enterprises look ahead to a future shaped by autonomous systems and real-time decision making, are we building AI that truly understands how our organizations work, or are we still guessing based on the past, and what would it take to change that?
Useful Links
Thanks to our sponsors, Alcor, for supporting the show.
Fler avsnitt från "Tech Talks Daily"



Missa inte ett avsnitt av “Tech Talks Daily” och prenumerera på det i GetPodcast-appen.







