Science Society podcast

Bridging the Gap: Biomimetic Machines with Dr. De Pascali

0:00
1:24:28
Rewind 15 seconds
Fast Forward 15 seconds
In this enlightening episode, Dr. De Pascali presents his revolutionary work on GeometRy-based Actuators that Contract and Elongate (GRACE), a class of pneumatic artificial muscles poised to have significant applications in fields ranging from biodiversity conservation to elder care.While artificial actuators have been successful in mimicking the contraction performance of muscles, the complexity, versatility, and grace of movements realized by muscle arrangements have remained largely unrivaled. Dr. De Pascali's GRACE, however, are designed to contract and extend, capturing the versatility of biological muscles.Comprising a single-material pleated membrane, GRACE can be fabricated at different scales and with varying materials, allowing a broad spectrum of lifelike movements. Intriguingly, GRACE can be produced through low-cost additive manufacturing and even directly integrated into functional devices, such as a fully 3D-printed pneumatic artificial hand. This allows for faster, more straightforward prototyping and fabrication of devices based on pneumatic artificial muscles.Join us as we delve into this innovative realm of biomimetic machines with Dr. De Pascali and explore how this breakthrough can redefine the landscape of robotics and prosthetics.Keywords: Dr. De Pascali, Biomimetic Machines, Pneumatic Artificial Muscles, GRACE, Additive Manufacturing, Robotics, Prosthetics, Artificial Actuators.3D-printed biomimetic artificial muscles using soft actuators that contract and elongate https://doi.org/10.1126/scirobotics.abn4155

More episodes from "Science Society"