
In this episode of the AtlantECO podcast, we had the privilege of speaking with Ferenc Jordan, an expert in network analysis, who shared insights into the importance of this methodology in studying the ocean. Although Ferenc hails from Hungary, a landlocked country, his fascination with the sea began in childhood, inspired by the documentaries of David Attenborough and Jacques Cousteau. His journey in marine science and ecology led him to explore the fascinating world of network analysis, an essential tool for understanding marine ecosystems.
Network analysis is a method of studying systems made up of interacting elements. These interactions can occur between species in an ecosystem, animals in a group, or even individuals in a society. By analysing the structure of these interactions, we can uncover valuable insights that would be missed by focusing on individual elements in isolation.
Ferenc explains that in the context of the AtlantECO project, network analysis plays a critical role in studying the microbiome—the trillions of microorganisms that live in marine environments. These microbes, though invisible to the naked eye, form incredibly complex networks, interacting with each other in ways that are not yet fully understood. By mapping these relationships, scientists aim to uncover how different microbes work together or avoid each other, helping to unlock the ecological processes that govern the ocean.
Studying the microbial networks in the ocean presents unique challenges. Unlike the traditional food webs of animals, where we can directly observe predator-prey relationships, microbial networks are harder to interpret. Microbes can coexist or avoid each other without any clear sign of direct interaction. The data collected in the AtlantECO project shows how these microorganisms occur together in certain patterns, but the meaning behind these patterns—whether it indicates cooperation or competition for example—remains unclear.
Ferenc describes the process of creating smaller, more manageable networks from large, complex microbial datasets. Aggregating these networks to identify "key" microbes—those that play a crucial role in maintaining the stability of the community—can provide valuable insights into the overall health of marine ecosystems. This is a topic of ongoing research in AtlantECO, and the results will likely shed light on new ways to monitor and manage ocean health.
One of the key goals of network analysis in the AtlantECO project is to develop indicators that can help communicate the health of marine ecosystems to decision-makers and stakeholders. Just as GDP is a simple indicator of a country's economic health, network-based indicators could signal the well-being of marine environments. These indicators would provide a clear, easily understandable metric that could inform policy decisions and guide the sustainable management of ocean resources.
Ferenc also shared his passion for science communication, particularly with younger audiences. As a scientist, he believes it is crucial to make complex research accessible and relatable to the next generation. His goal is not just to contribute to scientific understanding but also to inspire young people to engage with environmental issues and become advocates for the planet's future.
More on AtlantECO: www.atlanteco.eu
The AtlantECO project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 862923. This output reflects only the author’s view and the European Union cannot be held responsible for any use that may be made of the information contained therein.
Hosted on Acast. See acast.com/privacy for more information.
Altri episodi di "AtlantECO podcast"
Non perdere nemmeno un episodio di “AtlantECO podcast”. Iscriviti all'app gratuita GetPodcast.