
XVerse: Consistent Multi-Subject Control of Identity and Semantic Attributes via DiT Modulation
🤗 Upvotes: 25 | cs.CV
Authors:
Bowen Chen, Mengyi Zhao, Haomiao Sun, Li Chen, Xu Wang, Kang Du, Xinglong Wu
Title:
XVerse: Consistent Multi-Subject Control of Identity and Semantic Attributes via DiT Modulation
Arxiv:
http://arxiv.org/abs/2506.21416v1
Abstract:
Achieving fine-grained control over subject identity and semantic attributes (pose, style, lighting) in text-to-image generation, particularly for multiple subjects, often undermines the editability and coherence of Diffusion Transformers (DiTs). Many approaches introduce artifacts or suffer from attribute entanglement. To overcome these challenges, we propose a novel multi-subject controlled generation model XVerse. By transforming reference images into offsets for token-specific text-stream modulation, XVerse allows for precise and independent control for specific subject without disrupting image latents or features. Consequently, XVerse offers high-fidelity, editable multi-subject image synthesis with robust control over individual subject characteristics and semantic attributes. This advancement significantly improves personalized and complex scene generation capabilities.
D'autres épisodes de "Daily Paper Cast"
Ne ratez aucun épisode de “Daily Paper Cast” et abonnez-vous gratuitement à ce podcast dans l'application GetPodcast.