0:00
17:30
AOTInductor is a feature in PyTorch that lets you export an inference model into a self-contained dynamic library, which can subsequently be loaded and used to run optimized inference. It is aimed primarily at CUDA and CPU inference applications, for situations when your model export once to be exported once while your runtime may still get continuous updates. One of the big underlying organizing principles is a limited ABI which does not include libtorch, which allows these libraries to stay stable over updates to the runtime. There are many export-like use cases you might be interested in using AOTInductor for, and some of the pieces should be useful, but AOTInductor does not necessarily solve them.
Weitere Episoden von „PyTorch Developer Podcast“
Verpasse keine Episode von “PyTorch Developer Podcast” und abonniere ihn in der kostenlosen GetPodcast App.